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INTRODUCTION 

Western Ecosystems Technology, Inc. (WEST) is pleased to provide this final report as a 
deliverable product for Funding Opportunity Number F19AS00298, Sea Duck Joint Venture 
FY2020 Competitive Grants. In this work we addressed Science Need D, “Develop and/or 
evaluate methods for efficiently automating counts of birds in aerial photographs of flocks, 
including birds with varying distributions and density patterns, and uniform vs. dimorphic 
plumages,” of the funding opportunity. Currently, sea duck population monitoring utilizes aerial 
surveys and human review of photos to identify and count duck species. As the human review 
process is labor intensive and time consuming, the primary motivation for this work was to improve 
efficiency by developing an automated approach to detect sea ducks and other bird species in 
aerial photos. Specifically, our objective was to develop an artificial intelligence system based on 
a convoluted neural network capable of detecting and counting sea duck individuals in aerial 
photos and classifying individuals to species and sex when possible. 

METHODS 

Image Annotation 

We used a dataset consisting of 810 aerial images containing sea ducks and other birds in 
offshore and coastal environments. Images were collected from fixed wing aircraft at varying flight 
heights with image resolution ranging from (8688 x 5792 to 10328 x 7760 pixels). A trained 
biologist reviewed each image identifying and annotating the position of objects of interest (birds) 
in the image by drawing a bounding box surrounding each object. Each object was assigned to 
one of the following species categories (King Eider, Steller’s Eider, Spectacled Eider, Common 
Eider, Long-tailed Duck, Black Scoter, White-winged Scoter, Surf Scoter, Bufflehead, Red-
breasted Merganser, Other Duck, Other Bird, Not Bird). The “Other Duck” category consisted of 
instances when an object was known to be a duck but the species could not reliably be 
determined. The “Other Bird” category consisted of all non-duck species of birds. Objects were 
also assigned a sex category (male, female, unknown), when possible. Annotations were 
reviewed for accuracy and exported in Common Objects in Context (COCO) version 1.0 (Lin et 
al. 2015) format prior to model training. 

Model Training 

Prior to training models, we split the dataset into training and validation sets, with 70% used 
for training and 30% used for validation using the Python library scikit-learn v.0.23.2 
(Pedregosa et al. 2011). Due to a limited sample size for many duck species, we pooled species 
with less than 100 annotated objects into the Other Duck and Other Bird categories. The final 
species categories used for model training were: Black Scoter, Common Eider, King Eider, 
Stellar’s Eider, Other Bird, Other Duck, and Not Bird. To improve training efficiency, we resized 
all images to a width and height of 8688 and 5792 pixels, respectively. We initially explored three 
types of convoluted neural network model architectures: single shot detectors (Liu et al. 2016), 
You Only Look Once (Redmon et al. 2016), and Faster R-CNN (Ren et al. 2016). Initial results 
indicated the Faster R-CNN architecture provided superior performance and we subsequently 
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limited model training efforts to that architecture. Specifically, we used the Faster R-CNN 
architecture with a ResNet-50 feature pyramid network backbone (Ren et al. 2016) and weights 
that were pre-trained on the COCO dataset (Lin et al. 2015) from torchvision v.0.9.0 (Marcel and 
Rodriguez 2010). Anchor box sizes (expected sizes of objects in images) were initially set at 25, 
32, 45, 65, and 100 pixels, with aspect ratios of 0.5, 1, and 2. A stochastic gradient descent with 
momentum for the optimizer was used, with a momentum value of 0.9 and a weight decay rate of 
0.0005. We used a plateau-based learning rate optimizer with an initial learning rate of 0.0005 
and reduced the learning rate by a factor of 0.005 once the validation loss stopped improving. 
Validation loss was evaluated in every epoch and retained model weights if the validation loss 
improved, otherwise the weights were discarded and the best previous weights were loaded in 
the next epoch. All model training was conducted using the Pytorch v.1.9.1 library (Paszke et al. 
2019) in Python v.3.8.12 (Python Software Foundation 2022).  

Model Evaluation 

We evaluated model performance by deploying the model on the validation dataset (30% of 
images originally withheld from model training). For each object category in the model, we 
compared predicted bounding boxes and ground truth annotation for that category and calculated 
the amount of overlap based on Intersection over Union (IoU) where 
 

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑏𝑏𝑏𝑏𝑏𝑏 𝑢𝑢𝑢𝑢𝑢𝑢𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ 𝑎𝑎𝑎𝑎𝑎𝑎 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

  

 
For this study, we defined a true positive detection as a predicted bounding box that overlaps a 
ground truth annotation with an IoU greater than or equal to 0.10. Many studies set a higher IoU 
threshold of 0.50. However, for this study we deemed the lower threshold of 0.10 acceptable given 
the objects (sea ducks) were typically small relative to the camera field of view, thus, an IoU 
threshold of 0.10 was sufficient to achieve our goals with respect to identifying the position of 
objects in each image. All predicted bounding boxes that had an IoU less than 0.10 with a ground 
truth annotation were considered a false positive (FP). Additionally, all ground truth bounding 
boxes that did not have a matching predicted bounding box with an IoU greater than or equal to 
0.10 were considered a false negative (FN). We next calculated recall and precision for each 
category, where:  
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

  
 
and 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃

  
 
The convoluted neural network produces confidence estimates for each object detected that can 
be used to exclude objects unlikely to belong to any category of interest. In general, excluding 
objects with low confidence tends to decrease recall but increase precision. To describe this 
precision-recall tradeoff, we calculated the average precision (AP) for each category, which is a 
measure of the area under the precision-recall curve following standard methods for evaluating 
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object detection algorithms (Girshick et al. 2016). We then calculated a mean AP across all 
categories, which summarizes overall model fit. Additionally, we calculated precision and recall 
at a range of discrete confidence levels (0.05–0.95). Lastly, we calculated a confusion matrix 
comparing predicted and ground-truth categories when deploying the model using a confidence 
value that balanced precision and recall (confidence > = 0.10).  

RESULTS 

The annotation dataset consisted of 36,609 individual birds and 775 other marine species. The 
number of annotations was not evenly distributed among species categories used in the final 
model and ranged from 264–16,631 (Table 1). Model performance varied considerably among 
species categories, image quality, and background sea conditions. The two individual species 
with the largest training sample sizes (Common Eider and Steller’s Eider) had the highest AP 
values (0.58 and 0.55, respectively; Table 1). AP values were lower for individual species with 
lower sample sizes (Black Scoter = 0.23 and King Eider = zero). All King Eiders in the validation 
dataset were predicted to be other species or not detected (Table 2). The two combined 
categories (Other Duck and Other Bird) also had poor model performance with AP values of 0.08 
and 0.45, respectively (Table 1). Despite relatively poor ability to discriminate among species 
categories, the model successful detected 59% of all birds in the validation dataset (range 42–
83% among species categories) when using a confidence threshold of 0.1 and considering an 
object as detected regardless of the predicted species category (Table 2). Recall and precision 
rates varied as a function of the confidence threshold used in model deployment, with lower 
confidence values resulting in higher recall, but lower precision (Appendix A). 
 
Table 1. Model evaluation statistics.  

Category 
Number of Objects 

Recall* Precision2 
Average 
Precision Training Validation 

Black Scoter 1,401 458 0.34 0.48 0.23 
Common Eider 2,516 1,302 0.61 0.74 0.58 
King Eider 53 211 0 0 0 
Steller’s Eider 2,735 1,626 0.63 0.58 0.55 
Other Duck 7,465 2,211 0.18 0.24 0.08 
Other Bird 12,931 3,700 0.45 0.35 0.45 
Not Bird 429 346 0 0 0 
mean 3,932 1,407 0.32 0.34 0.27 
Note: Sample sizes indicated the number of objects (duck, birds) that were present in all training and validation images. 

Recall and precision rates are based on the validation dataset and deploying the model using a confidence 
threshold of 0.10. 

1 Recall and precision calculations based on excluding model predictions with a confidence less than 0.1. 
 
 
Table 2. Confusion matrix comparing predicted object categories and ground truth annotations.  

Ground-truth 

Predicted 
Percent 

Detected1 
Black 
Scoter 

Common 
Eider 

King 
Eider 

Steller's 
Eider 

Other 
Duck 

Other 
Bird 

Not 
Bird Empty 

Black Scoter 150 10 0 114 70 6 0 108 76.42 
Common Eider 3 765 0 8 5 32 0 489 62.44 
King Eider 3 0 0 54 116 2 0 36 82.94 
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Table 2. Confusion matrix comparing predicted object categories and ground truth annotations.  

Ground-truth 

Predicted 
Percent 

Detected1 
Black 
Scoter 

Common 
Eider 

King 
Eider 

Steller's 
Eider 

Other 
Duck 

Other 
Bird 

Not 
Bird Empty 

Steller's Eider 36 0 0 998 152 40 0 400 75.40 
Other Duck 60 5 0 351 389 143 0 1263 42.88 
Other Bird 27 149 0 23 227 1798 0 1476 60.11 
Not Bird 19 0 0 0 35 54 0 238 31.21 
Empty 10 17 0 75 307 1382 0 0 – 
Note: Values along the diagonal represent true positive detections with an Intersection over Union (IoU) > 0.10. Values 

in the ground-truth “Empty” row indicate instances where no ground truth annotation overlapped the predicted 
bounding box with an IoU > 0.10. Values in the predicted “Empty” column indicate instances where a ground-truth 
annotation existed, but no bounding box overlapped with an IoU > 0.10. 

1 An object was considered detected regardless of the predicted category. 
 

DISCUSSION 

The artificial intelligence approach we developed in this work is promising and we were also able 
to identify key challenges for automated detection of sea ducks in aerial photographs. In certain 
conditions, the neural network model performed well and detected all ducks and sea birds in a 
given image without any FP detections. Although we did not specifically quantify sources of FP 
or FN predictions, we did anecdotally note these error rates varied considerable among images. 
This high performance was generally observed on photos with calm dark sea conditions, an 
absence of floating debris, and relatively widely spaced birds. In contrast, the model performed 
less accurately on images that are more complex. FP detections generally occurred in images 
where sea foam, floating vegetation, or other bird-sized debris were miss-classified as ducks. In 
regard to FNs, the model struggles to accurately detect all objects when ducks and birds are in 
tightly clustered groups. This pattern of FNs is indicative of limited image resolution after images 
had been resized to accommodate the Faster R-CNN architecture. This model also showed mixed 
results in terms of correctly distinguishing between bird species. A number of factors likely limited 
the model’s ability to correctly classify species, including 1) insufficient image resolution, 2) poor 
image quality (motion blur, high flight heights), and 3) limited sample size for some species 
 
Several steps could be taken to improve model performance. The most obvious improvement 
would be to eliminate image resizing in favor of an image tiling approach to take advantage of the 
full resolution of the existing imagery. Tiling would entail converting individual images into multiple 
tiles (e.g., 800 x 800 pixel tiles) rather than reducing individual images to a lower-resolution 
version compatible with the convoluted neural network architectures. While tiling would decrease 
processing speed, it is likely to substantially increase model recall and precision. A second clear 
step that could be taken to improve performance would be to standardize input images for 
variation in camera settings and flight heights. If metadata on camera focal length and flight 
heights are available, images could be scaled (or tiled) in such a way that birds in the imagery are 
a consistent size in terms of pixel dimensions. Additional potential improvements include exploring 
an object segmentation approach and additional network architectures to better distinguish sea 
duck species and eliminate FPs associated with floating debris.  
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Appendix A. Recall and precision calculations for each species category 
at multiple confidence levels. 

Category Recall Precision Confidence 
Black Scoter 0.34 0.48 0.05 
Black Scoter 0.34 0.48 0.10 
Black Scoter 0.33 0.48 0.20 
Black Scoter 0.32 0.48 0.30 
Black Scoter 0.29 0.48 0.40 
Black Scoter 0.25 0.48 0.50 
Black Scoter 0.19 0.49 0.60 
Black Scoter 0.12 0.45 0.70 
Black Scoter 0.08 0.51 0.80 
Black Scoter 0.02 0.71 0.90 
Black Scoter 0 0 0.95 
Common Eider 0.63 0.74 0.05 
Common Eider 0.61 0.74 0.10 
Common Eider 0.59 0.74 0.20 
Common Eider 0.55 0.74 0.30 
Common Eider 0.49 0.73 0.40 
Common Eider 0.42 0.73 0.50 
Common Eider 0.36 0.72 0.60 
Common Eider 0.28 0.71 0.70 
Common Eider 0.21 0.70 0.80 
Common Eider 0.09 0.68 0.90 
Common Eider 0.03 0.73 0.95 
King Eider 0 0 0.05 
King Eider 0 0 0.10 
King Eider 0 0 0.20 
King Eider 0 0 0.30 
King Eider 0 0 0.40 
King Eider 0 0 0.50 
King Eider 0 0 0.60 
King Eider 0 0 0.70 
King Eider 0 0 0.80 
King Eider 0 0 0.90 
King Eider 0 0 0.95 
Steller's Eider 0.64 0.58 0.05 
Steller's Eider 0.63 0.58 0.10 
Steller's Eider 0.61 0.58 0.20 
Steller's Eider 0.59 0.58 0.30 
Steller's Eider 0.55 0.59 0.40 
Steller's Eider 0.48 0.60 0.50 
Steller's Eider 0.41 0.61 0.60 
Steller's Eider 0.33 0.62 0.70 
Steller's Eider 0.24 0.63 0.80 
Steller's Eider 0.12 0.68 0.90 
Steller's Eider 0.02 0.82 0.95 
Other Duck 0.21 0.24 0.05 
Other Duck 0.18 0.24 0.10 
Other Duck 0.16 0.24 0.20 
Other Duck 0.14 0.24 0.30 
Other Duck 0.11 0.23 0.40 
Other Duck 0.08 0.25 0.50 
Other Duck 0.03 0.20 0.60 
Other Duck 0.01 0.15 0.70 
Other Duck 0 0.08 0.80 
Other Duck 0 0 0.90 
Other Duck 0 0 0.95 
Other Bird 0.53 0.34 0.05 



 

 

Appendix A. Recall and precision calculations for each species category 
at multiple confidence levels. 

Category Recall Precision Confidence 
Other Bird 0.45 0.35 0.10 
Other Bird 0.38 0.35 0.20 
Other Bird 0.33 0.35 0.30 
Other Bird 0.28 0.35 0.40 
Other Bird 0.25 0.37 0.50 
Other Bird 0.23 0.39 0.60 
Other Bird 0.20 0.44 0.70 
Other Bird 0.18 0.51 0.80 
Other Bird 0.16 0.59 0.90 
Other Bird 0.14 0.63 0.95 
Not Bird 0 0 0.05 
Not Bird 0 0 0.10 
Not Bird 0 0 0.20 
Not Bird 0 0 0.30 
Not Bird 0 0 0.40 
Not Bird 0 0 0.50 
Not Bird 0 0 0.60 
Not Bird 0 0 0.70 
Not Bird 0 0 0.80 
Not Bird 0 0 0.90 
Not Bird 0 0 0.95 
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